Question		Mark	Acceptable answers	Notes	Total
1		M1	zinc		1
		M2	more reactive (than iron)	Accept higher in reactivity series / very reactive / more reactive than metal underneath / reacts with air or water in preference to iron Reject rusts	1
		M3	copper		1
		M4	(good electrical) conductor	Ignore ductile / conductor of heat	1
		M5	iron / steel	Reject stainless steel / cast iron	1
		M6	strong	Accept hard / tough / durable Ignore malleable	1
				,6 dependent on M1,3,5 ainless steel given in M5, M6 ed	

Question	Mark	Acceptable answers	Notes	Total	
$\mathbf{2}$	\mathbf{a}		M1	Fr / francium	

Question	Mark	Acceptable answers	Notes	Total		
$\mathbf{2}$	b		M1	NaF		

Question	Mark	Acceptable answers	Notes	Total	
$\mathbf{2}$	C		M1	cross in 2nd box	If crosses in more than 3 boxes, then deduct 1 mark for each
			M2	cross in 5th box	$\mathbf{1}$
			M3	cross in last box	wrong choice

Question	Mark	Acceptable answers	Notes	Total
$\mathbf{3}$	b	M1	only single bonds / no double bonds (between carbon atoms)	If single bonds alternative chosen, then must contain only / solely / alone or equivalent

Question	Mark	Acceptable answers	Notes	Total
$\mathbf{3}$	c		M1	alkane(s)

Question	Mark	Acceptable answers	Notes	Total	
$\mathbf{3}$	\mathbf{d}		M1	two carbon atoms joined together by single bond	$\mathbf{1}$
		M2	rest of structure correct	Must show 6 single bonds to H atoms lependent on M1	$\mathbf{1}$
				lgnore names, non-displayed and general formulae	

Question	Mark	Acceptable answers	Notes	Total
$\mathbf{3}$	\mathbf{e}	\mathbf{i}	M 1	$\mathrm{C}_{4} \mathrm{H}_{10}$

Question	Mark	Acceptable answers	Notes	Total
$\mathbf{3}$	e	ii	M1	isomers

Question	Mark	Acceptable answers	Notes	Total			
$\mathbf{3}$	\mathbf{f}		M1	repeat unit showing single C-C bond and four C-H bonds	Accept one or any multiples, eg four carbon atoms		
		M2	extension bonds and subscript n	Accept extension bonds as - or - - Balancing for n must be correct CQ on M1	$\mathbf{1}$		

Question	Mark	Acceptable answers	Notes	Total	
G					
$\mathbf{4}$	a	M1	all green / green at bottom / green spreads out / water is green	pre cloudy	$\mathbf{1}$
		M2	crystals smaller/disappeared ' break up / disintegrate	Ignore dissolved	$\mathbf{1}$
				ct bubbles lgnore water level drops	

Question	Mark	Acceptable answers	Notes	Total	
\mathbf{C}					
$\mathbf{4}$	\mathbf{b}		M1	diffusion	

Question	Mark	Acceptable answers	Notes	Total			
$\mathbf{4}$	c	M1	colour spreads faster / more spread out / more is green / crystals dissolve faster / diffusion is faster	ect mention of reaction	$\mathbf{1}$		
		M2	particles/ions/molecules move faster/more energy	Ignore collisions	$\mathbf{1}$		

Question			Mark	Acceptable answers	Notes	Total
5	a	i	M1	air	Accept atmosphere	1
			M2	water /steam / $\mathrm{H}_{2} \mathrm{O} /$ natural gas / hydrocarbons / crude oil	Accept naphtha Reject sea water Ignore methane	1

Question			Mark	Acceptable answers	Notes	Total
5	a	ii	M1		all species correct	1
			M2	$\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}$	balancing Accept multiples Accept \rightarrow instead of \rightleftharpoons lependent on M1 Ignore state symbols	1
					If all species correct but either or both of + and \rightleftharpoons missing than award M1 but not M2	

Question			Mark	Acceptable answers	Notes	Total
5	c	i	M1	cooled / temperature decreased	ore compressed	1
			M2	liquefied / condensed / becomes a liquid	Reject liquidised re references to melting and ts / fractional distillation	1

Question	Mark	Acceptable answers	Notes	Total	
$\mathbf{5}$	c	ii	M1	recycled / recirculated / put back into reactor	

Question	Mark	Acceptable answers	Notes	Total	
$\mathbf{5}$	\mathbf{d}	\mathbf{i}	M 1	ammonium sulphate	
			M 2		$\mathbf{1}$
			M 3	$2 \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$	formula of ammonium sulphate

Question	Mark	Acceptable answers	Notes	Total	
$\mathbf{5}$	d	ii	M1	neutralisation / proton transfer / acid-base	Accept exothermic

Question	Mark	Acceptable answers	Notes	Total		
$\mathbf{6}$	\mathbf{a}		M1	shared atoms)	electron(s) \quad (between	Reject between molecules

Question			Mark	Acceptable answers	Notes	Total
6	b		M1	weak forces between molecules / intermolecular forces	Accept correctly named inte forces (ie van der Waals' temporarily induced di attractions / London forces / forces Reject bonds between atoms / bonds breaking	1
			M2	little energy needed to overcome	M2 dependent on M1	1
					If neither M1 nor M2 scored, allow 1 mark for boiling point lower than room temperature/lower than $30^{\circ} \mathrm{C}$	

Question	Mark	Acceptable answers	Notes	Total	
$\mathbf{6}$	c		M1	dot-and-cross pair between O and both H atoms	Allow any combinations of dots and crosses Ignore inner shell of oxygen Element symbols not needed, but if wrong then no marks bonding electrons do not hav
		M2	four other electrons around O AND no more electrons around H Ad M2 dependent on M1	$\mathbf{1}$	

Question	Mark	Acceptable answers	Notes	Total	
$\mathbf{6}$	\mathbf{d}	\mathbf{i}	M1	exothermic	

Question	Mark	Acceptable answers	Notes	Total	
$\mathbf{6}$	\mathbf{d}	ii	M1	negative / -	

Question	Mark	Acceptable answers	Notes	Total	
$\mathbf{6}$	\mathbf{d}	iii	M1	energy/heat needed to break bonds / bond breaking is endothermic	$\mathbf{1}$
			M2	energy/heat released when bonds are formed / bond formation is exothermic	$\mathbf{1}$
		M3	bonds in reactants are weaker than those in products / more energy released when bonds are formed than is needed to break bonds	$\mathbf{1}$	

Question	Mark	Acceptable answers	Notes	Total	
$\mathbf{6}$	e		M1	decreases / slower	
			M2	decreases / closer	ept more tightly packe

Question		Mark	Acceptable answers			Notes	Total
6	f	M1	$\begin{aligned} & \mathrm{CuSO}_{4}(\mathrm{~s}) \\ & \mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}(\mathrm{~s}) \end{aligned}$	$5 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	\rightarrow	$\begin{array}{\|ll} \hline \mathrm{CuSO}_{4} \text { AND } \mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O} \\ \text { both correct } \end{array}$	1
		M2				$\mathrm{H}_{2} \mathrm{O}$ AND consequentially correct balancing Accept \rightleftharpoons in place of \rightarrow	1
		M3				All state symbols correct, dependent on correct formulae (including $\mathrm{CuSO}_{4} .2 \mathrm{H}_{2} \mathrm{O}$ etc)	1

Question	Mark	Acceptable answers	Notes	Total	
$\mathbf{7}$	\mathbf{a}		M1	atoms of same element/with same atomic number /with same number of protons	Do not award M1 if no mention of atoms re same number of electrons Reject different number of electrons ect compounds / moler
		M2	different mass numbers / different numbers of neutrons	$\mathbf{1}$	

Question	Mark	Acceptable answers	Notes	Total	
$\mathbf{7}$	c		M1	carbon / C	

Question	Mark	Acceptable answers	Notes	Total	
$\mathbf{7}$	\mathbf{g}	\mathbf{i}	$\mathrm{M1}$	$\mathrm{Cu}(\mathrm{OH})_{2}$	ept Cu($\left.\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}$ ept correct formula in incorrec ation
		$\mathrm{M2}$	blue	re pale Reject dark / royal/navy	$\mathbf{1}$

Question	Mark	Acceptable answers	Notes	Total		
$\mathbf{7}$	\mathbf{g}	ii	M1	precipitate dissolves / forms solution	$\mathbf{1}$	
		M2	dark/deep/royal/navy blue	Dark etc blue solution scores both marks even if precipitate mentioned as still present re inky	$\mathbf{1}$	

Question		Mark	A	Notes	Total
8	a	M1	filter / centrifuge and decant	Accept allow (precipitate) to settle and pour off water	1
		M2	wash / rinse		1
		M3	warm / heat / leave to dry/to evaporate/in warm place	Accept mention of drying with filter paper / Bunsen burner / hairdryer / oven	1
				M2 and M3 dependent on attempt at M1	

Question			Mark	Acceptable answers	Notes	Total
8	b	i	M1	$5.55 \div 111$		1
			M2	0.05	re units Correct answer scores both marks	1
Question			Mark	Acceptable answers	Notes	Total
8	b	ii	M1	0.05 / answer to (b)(i)	re units	1
Question			Mark	Acceptable answers	Notes	Total
8	b	iii	M1	136	pre units	1
Question			Mark	Acceptable answers	Notes	Total
8	b	iv	M1	```0.05 x 136 / answer to (b)(ii) x answer to b(iii)```		1
			M2	6.8	Correct answer CQ on (b)(ii) and b(iii) scores both marks If (b)(ii) incorrect, accept 6.8 if evidence of using mass ratios Ignore units	1

